Performance improvement of GaN-based light-emitting diodes grown on patterned Si substrate transferred to copper.

نویسندگان

  • Kei May Lau
  • Ka Ming Wong
  • Xinbo Zou
  • Peng Chen
چکیده

LEDs on Si offer excellent potential of low cost manufacturing for solid state lighting and display, taking advantage of the well-developed IC technologies of silicon. In this paper, we report how the performance of LEDs grown on Si can be improved. Multiple quantum well InGaN LED structure was grown on patterned silicon substrates and circular LEDs 160 µm in radius were processed. Fabricated LEDs were then transferred to an electroplated copper substrate with a reflective mirror inserted by a double-flip transfer process, to improve the light extraction efficiency and heat dissipation. The light output power of LEDs on copper increased by ~80% after the transfer. The operating current before the onset of light output power saturation also increased by 25% because of the good thermal conductivity of copper. The light output power of packaged LEDs on copper was 6.5 mW under 20 mA current injection and as high as 14 mW driven at 55 mA.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Performance of GaN-based light-emitting diodes fabricated using GaN epilayers grown on silicon substrates.

Light extraction of GaN-based light-emitting diodes grown on Si(111) substrate (GaN-on-Si based LEDs) is presented in this study. Three different designs of GaN-on-Si based LEDs with the lateral structure, lateral structure on mirror/Si(100) substrate, and vertical structure on mirror/Si(100) substrate were epitaxially grown by metalorganic chemical vapor deposition and fabricated using chemica...

متن کامل

Crystal Quality and Light Output Power of GaN-Based LEDs Grown on Concave Patterned Sapphire Substrate

The crystal quality and light output power of GaN-based light-emitting diodes (LEDs) grown on concave patterned sapphire substrate (CPSS) were investigated. It was found that the crystal quality of GaN-based LEDs grown on CPSS improved with the decrease of the pattern space (percentage of c-plane). However, when the pattern space decreased to 0.41 μm (S0.41-GaN), the GaN crystallinity dropped. ...

متن کامل

Enhancement of InGaN-Based Light Emitting Diodes Performance Grown on Cone-Shaped Pattern Sapphire Substrates

To enhance light extraction effciency, high-quality InGaN-based light emitting diodes (LED) was grown on cone-shaped patterned sapphire (CPSS) by using metal organic chemical vapor deposition (MOCVD). From the transmission electron microscopy (TEM) observation, the CPSS was confirmed to be an efficient way to reduce the threading dislocation density in the GaN epilayer. A sharp and high intensi...

متن کامل

Performance enhancement of GaN-based light emitting diodes by transfer from sapphire to silicon substrate using double-transfer technique

GaN-based light emitting diodes (LEDs) fabricated on sapphire substrates were successfully transferred onto silicon substrates using a double-transfer technique. Compared with the conventional LEDs on sapphire, the transferred LEDs showed a significant improvement in the light extraction and thermal dissipation, which should be mainly attributed to the removal of sapphire and the good thermal c...

متن کامل

Efficiency improvement of GaN-based ultraviolet light-emitting diodes with reactive plasma deposited AlN nucleation layer on patterned sapphire substrate

The flip chip ultraviolet light-emitting diodes (FC UV-LEDs) with a wavelength of 365 nm are developed with the ex situ reactive plasma deposited (RPD) AlN nucleation layer on patterned sapphire substrate (PSS) by an atmospheric pressure metal-organic chemical vapor deposition (AP MOCVD). The ex situ RPD AlN nucleation layer can significantly reduce dislocation density and thus improve the crys...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Optics express

دوره 19 Suppl 4  شماره 

صفحات  -

تاریخ انتشار 2011